
3D Function Grapher
. for example: ln(x*y). sin, for example: sin(x^21). cos, for example: cos(xy+2). tan, . Enter a formula for f(x,y) (in terms of x,y), enter x, y ranges and click the .
http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/Web Results
Trigonometric Indentities
tan(2x) = 2 tan(x) / (1  tan2(x)). sin2(x) = 1/2  1/2 cos(2x). cos2(x) = 1/2 + 1/2 cos( 2x). sin x  sin y = 2 sin( (x  y)/2 ) cos( (x + y)/2 ). cos x  cos y = 2 sin( (xy)/2 ) .
http://math2.org/math/trig/identities.htmWhere are the maxima and minima in f(x,y)=sin(x)sin(y)?
The result is "constant times cos(x)". So fx(x,y)=cos(x)sin(y), the "constant" being sin(y). Similarly, fy(x,y)=sin(x)cos(y). Now we want to find x and y so that both of .
http://www.ucl.ac.uk/Mathematics/geomath/level2/pdiff/pd72.htmlTrigonometric Identities and Formulas
Jun 21, 2012 . cos(X  Y) = cosX cosY + sinX sinY sin(X + Y) . sinX + sinY = 2sin[ (X + Y) / 2 ] cos[ (X  Y) / 2 ] . sinX  sinY = 2cos[ (X + Y) / 2 ] sin[ (X  Y) / 2 ] .
http://www.analyzemath.com/trigonometry/trigonometric_formulas.htmlTrigonometric Functions
Computes the angle of the vector (x,y) in radians, in the range [pi, Pi]. Csc(x), Cosecant of x, Defined as: Csc(x) = 1/Sin(x). Sec(x), Secant of x, Defined as: Sec( x) .
http://www.speqmath.com/usersguide/functions_trigonometry.htmlDouble integral of sin(y^2), bounded by x=0,x=y,y=1.?  Yahoo! Answers
? [D] sin(y²) dD. D is a triangle with vertices (0,0), (0,1) & (1,1) Integrate wrt x first so we need I = ? sin(y²) dxdy, [x=0,y], [y=0,1] ? wrt x : I = ? xsin(y²), .
http://answers.yahoo.com/question/index?qid=20120422002130AADKf9UOrdinary Differential Equations/Graphing 1  Wikibooks, open books ...
Contents. 1 Slope Fields. 1.1 Example 1: y'=1; 1.2 Example 2: y'=x; 1.3 Example 3 : y'=sin x; 1.4 Example 4: y'=y; 1.5 Example 5: y' = sin y; 1.6 Example 6: y'=xy .
http://en.wikibooks.org/wiki/Ordinary_Differential_Equations/Graphing_1Proving $\sin x  \sin y < x  y  Mathematics  Stack Exchange
Oct 9, 2011 . Prove that $\sin x  \sin y < x  y$ for all $x \neq y$. Hint: the same statement, with $<$ replaced by $\leq$, is a straightforward consequence of .
http://math.stackexchange.com/questions/71078/provingsinxsinyxySOLUTION: prove the following identity sin(x)cos(y)=1/2[sin(xy)sin ...
SOLUTION: prove the following identity sin(x)cos(y)=1/2[sin(xy)sin(x+y)] Thank you to the one that helps out. Algebra > Algebra > Trigonometrybasics .
http://www.algebra.com/algebra/homework/Trigonometrybasics/Trigonometrybasics.faq.question.22705.htmlTrigonometric Identities
tan(2x) = 2 tan(x) / (1  tan^2(x)). sin^2(x) = 1/2  1/2 cos(2x). cos^2(x) = 1/2 + 1/2 cos(2x). sin x  sin y = 2 sin( (x  y)/2 ) cos( (x + y)/2 ). cos x  cos y = 2 sin( (x .
http://www.math.com/tables/trig/identities.htmMaxima of f(x,y)=sin(x)sin(y)
Return. Check that (p/2,p/2) is a maximum. We need to calculate the second derivatives of the function f(x,y)=sin(x)sin(y). Differentiating twice with respect to x .
http://www.ucl.ac.uk/Mathematics/geomath/level2/pdiff/pd92.htmlChange Location